

E CONF SERIES

International Conference on Educational Discoveries and Humanities

Hosted online from Moscow, Russia

Website: econfseries.com

16th October, 2025

WARP YARN TENSION - IMPACT ON WEAVING QUALITY AND PRODUCT PROPERTIES

Muslimbek Abdujabborov

Head of Department, "Aisha Textile" LLC

Ph.D. in Technical Sciences

Rakhim Karimov

Head of Research Department, "ArtSoftTex" LLC

Candidate in Technical Sciences, Associate Professor

Dilbar Aliyeva

Professor, "Textile Materials Technology" Department, Namangan State

Technical University, D.Sc. in Technical Sciences

Abstract

Warp yarn tension is a pivotal parameter in the weaving process, directly influencing fabric quality, structural integrity, and production efficiency. This paper analyzes the fundamental role of tension control, its effects on weaving defects and physical-mechanical properties of the final product, and the methodologies for its optimization. Through a review of existing literature and industrial practices, we conclude that precise and consistent tension management is not merely a technical requirement but a significant economic factor in textile manufacturing.

Keywords: warp tension, weaving defects, fabric quality, loom control, textile manufacturing.

I. Introduction

The weaving process, a fundamental method of fabric formation, involves the systematic interlacing of warp (longitudinal) and weft (transverse) yarns. The tension applied to the warp yarns during this process is a critical variable that dictates the quality, appearance, and performance of the woven fabric. Optimal tension ensures a smooth shedding motion, clean weft insertion, and a uniform fabric

International Conference on Educational Discoveries and Humanities

Hosted online from Moscow, Russia

Website: econfseries.com

16th October, 2025

structure. In contrast, improper tension—either excessive or insufficient—leads to a plethora of defects, reduced loom efficiency, and inferior product quality. This paper examines the cause-and-effect relationship between warp tension and fabric quality, underscoring its paramount importance in modern textile production.

II. The Concept of Warp Yarn Tension

Warp tension is the axial force applied to the yarns in the warp sheet to keep them straight and parallel during weaving. It is typically measured in units of centiNewtons (cN) or grams-force (gf).

A. Physical Interpretation: Tension is a consequence of the frictional drag exerted on the warp sheet as it unwinds from the weaver's beam, passes through the back rest, healds, reed, and finally forms the fabric at the fell of the cloth.

B. Key Parameters: The key parameters are average tension and tension variability. While average tension must be set according to the yarn type and fabric structure, low variability is often more critical for achieving high, uniform quality.

III. Impact of Tension on Weaving Quality

The level of warp tension has a direct and immediate impact on several aspects of weaving performance.

A. Weaving Uniformity:

Consistent tension is the bedrock of uniform fabric cover and appearance. Low tension causes slack yarns, leading to "wavy" or loose picks, while high tension can cause excessive yarn elongation and a tight, stiff fabric hand-feel.

B. Occurrence of Defects:

Excessive Tension: Leads to frequent yarn breakages, increasing downtime. It can also cause "reed marks" (permanent fabric streaks) and over-stretching of yarns, reducing the fabric's tear strength (see Fig.1).

International Conference on Educational Discoveries and Humanities

Hosted online from Moscow, Russia

Website: econfseries.com

16th October, 2025

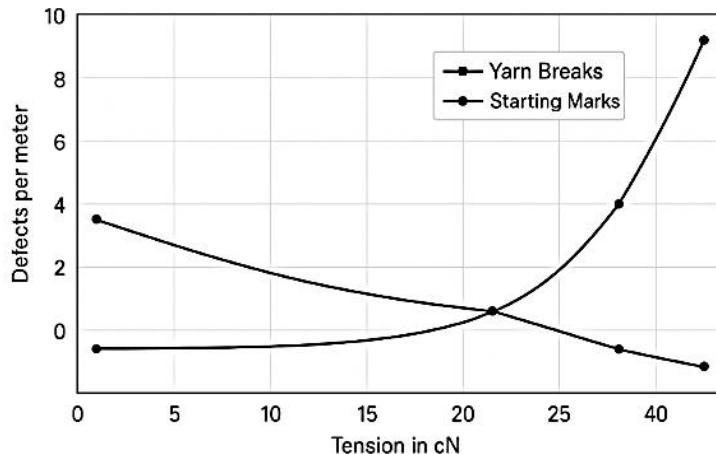


Figure 1. Correlation between warp yarn and fabric defect rate.

Insufficient Tension: Results in entangled warp yarns during shedding, leading to "bad sheds" and weft insertion failures. It is a primary cause of starting marks (set marks) in the fabric.

C. Impact on Fabric Structure: Tension influences the crimp balance between warp and weft. High warp tension forces more crimp onto the weft yarn, altering the fabric's dimensional stability, weight, and drape.

IV. Tension Control Methods

A. Conventional Methods: Traditional looms relied on mechanical systems like weighted levers and friction brakes on the weaver's beam. These systems, while robust, were prone to drift and could not respond dynamically to tension variations.

B. Modern Automated Systems: Contemporary electronic looms employ closed-loop control systems. Sensors (e.g., tension rollers equipped with transducers) measure real-time tension, and a Programmable Logic Controller (PLC) adjusts the servo-motor driving the weaver's beam to maintain a preset tension profile.

V. Conclusion

Maintaining optimal and consistent warp yarn tension is a non-negotiable prerequisite for efficient, high-quality weaving production. It is a complex variable interacting with yarn properties, loom mechanics, and fabric design. The evolution

E CONF SERIES

International Conference on Educational Discoveries and Humanities

Hosted online from Moscow, Russia

Website: econfseries.com

16th October, 2025

from mechanical to electronic, adaptive control systems represents a significant advancement, enabling manufacturers to minimize defects, reduce waste, and enhance product consistency. Future work will likely focus on AI-driven predictive tension control that can self-optimize based on real-time fabric inspection data.

REFERENCES

1. Adamur, S. (2001). *Handbook of Weaving*. CRC Press.
2. Beltran, R., & Wang, L. (2005). An experimental study of warp tension in weaving. *Journal of the Textile Institute*, 96(2), 105-111.
3. Gokarneshan, N., & Alagirusamy, R. (2009). *Weaving: Conversion of Yarn to Fabric*. Woodhead Publishing India.
4. Lord, P. R., & Mohamed, M. H. (1982). *Weaving: Conversion of Yarn to Fabric*. Merrow Publishing.
5. Nawaz, S. H., et al. (2020). Impact of warp tension on the physical and mechanical properties of woven fabrics. *The Journal of The Textile Institute*, 111(4), 512-520.