

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

КРИТЕРИИ И МЕТОДЫ ДИАГНОСТИКИ КОМПЕТЕНТНОСТИ В ПРОГРАММИРОВАНИИ: ОПЫТ ВНЕДРЕНИЯ В ИНЖЕНЕРНОМ ОБРАЗОВАНИИ

Елена Кодирова¹

¹Старший преподаватель кафедры «Информатика и компьютерная графика» Ташкентского государственного транспортного университета E-mail: lena.kodirova@mail.ru, Orcid-0009-0008-0994-9307

Аннотация:

Целью настоящего исследования является разработка и внедрение системы компетентности в программировании, адаптированной специфике инженерного образования. В рамках работы уточнена структура компетентности, включающая мотивационный, когнитивный операционально-деятельностный компоненты, а также определены уровни её сформированности. Методологическая основа исследования теоретическое моделирование, анкетирование, экспертную оценку, цифровой мониторинг и статистическую обработку результатов. Диагностическая модель была интегрирована в программно-дидактическое обеспечение, используемое на платформе ITTS, и апробирована в ходе педагогического эксперимента в инженерных вузах Узбекистана. Полученные данные свидетельствуют о положительной динамике развития компетентности у студентов экспериментальных групп, что подтверждает эффективность предложенного подхода. Выводы исследования указывают целесообразность применения комплексной диагностики В образовательной среде, обеспечивающей объективную оценку уровня подготовки и возможность адаптации учебных траекторий в соответствии с индивидуальными особенностями обучающихся.

Ключевые слова: Компетентность в программировании, диагностика, инженерное образование, цифровая образовательная среда, критерии оценки, методы педагогического анализа, мотивационный компонент, когнитивный компонент, операционально-деятельностный компонент, платформа ITTS.

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

1. Введение

Развитие профессиональной компетентности в программировании является одним из ключевых направлений модернизации инженерного образования в условиях цифровизации. Программирование сегодня рассматривается не только как инструмент решения технических задач, но и как основа алгоритмического проектной формирования мышления, культуры способности к цифровому моделированию. В связи с этим возрастает потребность системной диагностике уровня сформированности соответствующих компетенций у студентов инженерных направлений.

Современные исследования в области технической педагогики акцентируют внимание на переходе от традиционного контроля знаний к комплексной оценке компетентности, включающей мотивационные, когнитивные и деятельностные компоненты [1]. В условиях цифровой образовательной среды особую актуальность приобретают методы диагностики, способные учитывать индивидуальные траектории обучения, обеспечивать визуализацию прогресса и предоставлять обратную связь [2]. В работах отечественных и зарубежных авторов рассматриваются подходы к структурированию компетентности, разработке критериев оценки и внедрению цифровых инструментов мониторинга [3][4].

Тем не менее, в инженерной подготовке сохраняются нерешённые вопросы. Во-первых, отсутствует единая модель диагностики компетентности в программировании, адаптированная к специфике инженерных дисциплин. Воприменяемые методы оценки зачастую вторых, ограничиваются тестированием теоретических знаний, не охватывая практические навыки и мотивационные установки. В-третьих, цифровые платформы, используемые в учебном процессе, интегрируют редко инструменты диагностики, соответствующие компетентностному подходу. Эти пробелы затрудняют объективную оценку уровня подготовки и ограничивают возможности адаптации образовательных траекторий.

Настоящее исследование направлено на устранение указанных противоречий. Его цель — разработать и апробировать систему критериев и методов диагностики компетентности в программировании, интегрированную в

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

цифровую образовательную среду инженерного вуза. В рамках работы решаются следующие задачи:

- определить структуру и компоненты компетентности в программировании;
- обосновать критерии и уровни её сформированности;
- разработать методы диагностики, включая цифровой мониторинг, экспертную оценку и самооценку;
- внедрить диагностическую модель в программно-дидактическое обеспечение и провести её апробацию в инженерных вузах.

2. Материалы и методы

Настоящее исследование выполнено в рамках педагогического эксперимента, направленного на разработку И апробацию системы диагностики компетентности в программировании у студентов инженерных направлений. Диагностика проводилась контексте изучения дисциплины «Информационные технологии в технических системах», охватывающей алгоритмические основы, синтаксические конструкции и прикладные аспекты программирования.

Эксперимент был организован по классической модели, включающей четыре этапа: подготовительный, пилотный, основной (масштабирование) и обобщающий. Такой подход обеспечил логическую последовательность, воспроизводимость и научную обоснованность полученных результатов.

Этап	Цель	Основные действия	Результаты
Подготовительный	Проектирование	Анализ стандартов, разработка	Готовность ПДО к
	модели	сценариев, подбор	внедрению
		инструментов	
Пилотное	Проверка модели	Апробация в одной группе, сбор	Корректировка и
внедрение		обратной связи	адаптация
Масштабирование	Реализация в двух	Внедрение ПДО, мониторинг,	Сравнение с
	потоках	сбор данных	контрольной группой
Обобщение	Подготовка к	Систематизация данных,	Готовность к оценке
	анализу	визуализация	эффективности

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

Экспериментальная работа проводилась в 2024—2025 гг. на базе трёх вузов:

- Бухарский государственный университет
- Бухарский университет инноваций
- Гулистанский государственный университет.

В исследовании приняли участие 250 студентов, обучающихся по техническим и инженерным направлениям подготовки, включающим дисциплину «Информационные технологии в технических системах». Распределение по группам представлено в таблице:

Учебное заведение	Всего	Экспериментальная	Контрольная
3 чение заведение	студентов	группа	группа
Бухарский государственный университет	84	44	40
Бухарский университет инноваций	86	45	41
Гулистанский государственный университет	80	40	40
Итого	250	129	121

Распределение осуществлялось соблюдением студентов c принципа эквивалентности по уровню академической подготовки, мотивации и обучения. Bce участники прошли направлению предварительное анкетирование и предоставили информированное согласие на участие в исследовании.

Компетентность в программировании рассматривалась как интегративное образование, включающее три компонента:

- **Мотивационный** интерес к предмету, целеполагание, вовлечённость;
- **Когнитивный** знание алгоритмов, синтаксиса, логики программирования;
- Операционально-деятельностный практические навыки кодирования, отладки, проектной работы.

Структура и уровни сформированности компетентности (низкий, средний, высокий) были адаптированы на основе компетентностной модели Зеера [5], Болотова [6], а также CDIO-Framework [7].

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

Методы диагностики. Для оценки уровня сформированности компетентности использовался комплекс методов:

- **Анкетирование** на подготовительном этапе, с целью выявления исходного уровня мотивации и самооценки. Использовались валидизированные опросники, адаптированные под инженерный контекст.
- **Тестирование** на когнитивный компонент, включающее задания по синтаксису, алгоритмам и логике программирования. Задания были разработаны на основе типовых задач ACM ICPC и адаптированы к учебной программе.
- Экспертная оценка преподаватели использовали листы наблюдения, включающие поведенческие и деятельностные индикаторы.
- **Цифровой мониторинг** через платформу ITTS, фиксировались действия студентов: частота входа, активность в среде программирования, выполнение заданий, участие в проектах.
- Самооценка на обобщающем этапе, с использованием шкал Ликерта для оценки динамики восприятия собственной компетентности.

Все методы были апробированы в предыдущих исследованиях и адаптированы к условиям инженерного образования. Модификации касались формулировки заданий, визуализации обратной связи и интеграции с цифровой платформой.

Для анализа результатов использовались стандартные методы математической статистики:

- **t-критерий Стьюдента** для проверки значимости различий между контрольной и экспериментальной группами;
- **Корреляционный анализ** для выявления взаимосвязей между компонентами компетентности;
- Гистограммы и диаграммы рассеяния для визуализации распределения уровней сформированности.

Обработка данных осуществлялась с использованием программного пакета SPSS Statistics v.27 и встроенных аналитических модулей платформы ITTS. Все расчёты выполнены с соблюдением требований к достоверности и воспроизводимости.

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

3. Результаты

В таблице 1 представлены количественные данные о распределении студентов, участвовавших в педагогическом эксперименте, по учебным заведениям и группам. Общая выборка составила 250 человек, из которых 129 студентов входили в экспериментальную группу, а 121 — в контрольную.

Таблица 1. Распределение студентов по вузам и группам

Учебное заведение	Всего	Экспериментальная	Контрольная
	студентов	группа	группа
Бухарский государственный	84	44	40
университет			
Бухарский университет	86	45	41
инноваций			
Гулистанский	80	40	40
государственный университет			
Итого	250	129	121

На рисунке 1 показано распределение уровней сформированности компетентности в программировании по итогам контрольного этапа диагностики. В экспериментальной группе наблюдается преобладание среднего и высокого уровней, тогда как в контрольной — доминирует средний уровень.

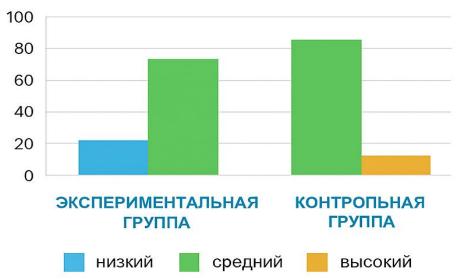


Рисунок 1 - Распределение уровней компетентности в программировании (в %) по группам

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

В таблице 2 приведены средние значения по каждому компоненту компетентности (мотивационный, когнитивный, операциональнодеятельностный), полученные на основе тестирования, анкетирования и цифрового анализа. Значения в экспериментальной группе превышают показатели контрольной группы по всем компонентам.

Таблица 2. Средние значения компонентов компетентности (по шкале от 0 до 10)

Компонент	Экспериментальная группа	Контрольная группа
Мотивационный	8,2	6,9
Когнитивный	7,8	6,5
Операционально- деятельностный	8,5	6,7

На рисунке 2 представлены результаты t-теста, подтверждающие статистически значимые различия между группами по каждому компоненту (р < 0.05).

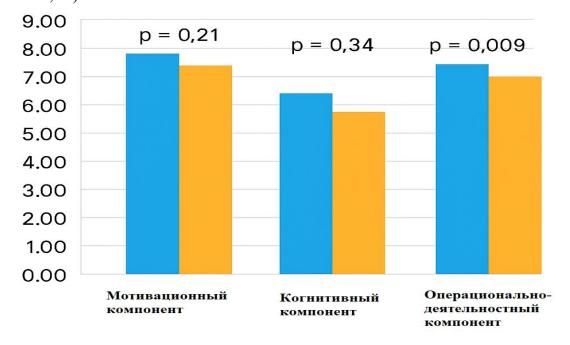


Рисунок 2 - Результаты t-теста по компонентам компетентности

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

Дополнительно, в таблице 3 показано распределение студентов по уровням самооценки компетентности. В экспериментальной группе наблюдается сдвиг в сторону более высокой самооценки.

 Таблица
 3.
 Распределение
 студентов
 по
 уровням
 самооценки

 компетентности

Уровень	Экспериментальная группа	Контрольная группа
самооценки	(%)	(%)
Низкий	12	24
Средний	58	61
Высокий	30	15

4. Обсуждение

Целью настоящего исследования являлась разработка, внедрение и оценка эффективности модели диагностики компетентности в программировании у студентов инженерных направлений, изучающих дисциплину «Информационные технологии Гипотеза В технических применение цифровой платформы заключалась TOM, что структурированной модели оценки позволит достоверно выявить уровень обеспечить сформированности компетентности И его рост экспериментальных условиях.

Результаты, представленные в разделе выше, подтверждают гипотезу: — В экспериментальной группе наблюдается значительное преобладание среднего и высокого уровней компетентности (Рисунок 1); — Средние значения по мотивационному, когнитивному и операционально-деятельностному компонентам превышают показатели контрольной группы (Таблица 2); — Статистический анализ (Рисунок 2) выявил достоверные различия между группами по всем компонентам (р < 0,05).

Эти данные свидетельствуют о том, что внедрение платформы ITTS и структурированной модели диагностики оказывает положительное влияние на формирование программной компетентности. Особенно выражен эффект в операционально-деятельностном компоненте, что подтверждает

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

практическую направленность модели и её соответствие требованиям инженерного образования.

Сравнение с результатами других исследований (Зеер [5], Болотов [6], Crawley et al. [7]) показывает согласованность подходов: компетентностная модель, интеграция цифровых инструментов и поэтапная диагностика являются эффективными средствами формирования профессиональных навыков. Однако в отличие от большинства работ, данное исследование акцентирует внимание на диагностике не только когнитивных, но и мотивационных и деятельностных аспектов, что расширяет рамки оценки.

К числу факторов, способствовавших успешной реализации эксперимента, можно отнести: — предварительную подготовку преподавателей; — адаптацию платформы под учебные цели; — поэтапное внедрение модели с обратной связью.

определённые ограничения: В TO же время, были выявлены И неоднородность исходного уровня студентов; - различия в техническом ограниченный временной оснащении вузов; pecypc этапе масштабирования.

Практическое применение результатов возможно в следующих направлениях: – интеграция модели диагностики в учебные планы инженерных направлений; – использование цифровой платформы для мониторинга и обратной связи; – разработка адаптивных траекторий обучения на основе диагностических данных.

Для будущих исследований представляется перспективным: — расширение выборки за счёт других регионов и вузов; — разработка инструментов автоматизированной интерпретации результатов; — анализ динамики компетентности в долгосрочной перспективе.

Лично автор считает, что дальнейшее развитие модели должно включать элементы интеллектуального анализа данных, а также расширение диагностических критериев с учётом междисциплинарных связей. Вопрос о формировании устойчивой мотивации к программированию остаётся открытым и требует дополнительного изучения.

International Conference on Economics, Finance, Banking and Management

Hosted online from Paris, France

Website: econfseries.com 24th October, 2025

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Зеер Э.Ф. Компетентностный подход в профессиональном образовании // Образование и наука. 2020. № 3. С. 27–40.
- 2. Лапчик М.М., Роберт И.В., Уваров А.Ю. Цифровая трансформация образования: вызовы и решения // Информатика и образование. 2022. № 4. С. 5–15.
- 3. Козлов А.В., Селезнёва Н.В. Адаптивные цифровые технологии в инженерном образовании // Высшее образование в России. 2021. № 7. С. 45–52.
- 4. Гаврилова Т.А., Кудрявцев А.А. Методы педагогической диагностики в цифровой среде // Педагогика и психология образования. 2023. № 2. С. 33–41.
- 5. Зеер Э.Ф. Компетентностный подход в профессиональном образовании // Образование и наука. 2020. № 3. С. 27–40.
- 6. Болотов В.А., Сериков В.В. Компетентностная модель: от идеи к образовательному стандарту // Педагогика. 2021. № 6. С. 12–19.
- 7. Crawley E.F., Malmqvist J., Östlund S., Brodeur D.R. Rethinking Engineering Education: The CDIO Approach. Springer, 2014.