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Abstract 

In the article, based on the Hamilton variational principle, a mathematical model of 

the process of geometric nonlinear deformation of thin magnetoelastic plates with a 

complex structural shape was developed and calculations were performed. In this 

case, the three-dimensional mathematical model was transferred to a two-

dimensional view using the Kirchhoff-Liav hypothesis. Cauchy's relationship, 

Hooke's law, Lawrence's force, and Maxwell's electromagnetic tensor were used to 

determine kinetic and potential energy and work done by external forces. The effects 

of the electromagnetic field on the deformation stress state of the magnetoelastic 

plate were observed. As a result, a mathematical model in the form of a system of 

partial differential equations with initial and boundary conditions was created. To 

solve the equation, a calculation algorithm was developed using the R-function, 

Bubnov-Galerkin, Newmark, Gaussian, Gaussian squares, and Iteration numerical 

methods. Calculations were carried out in various mechanical states of the 

magnetoelastic plate, its boundaries were fixed, one side was hinged and the other 

side was free, and numerous results were obtained. A comparative analysis of the 

results of the calculations was presented. 

 

Keywords: Hamilton principle, Bubnov Galerkin, Cauchy equations, Hooke's law, 

Maxwell's electromagnetic tensor, R-function, Gaussian, Iteration. 

 

INTRODUCTION 

Today, researchers are interested in nonlinear theories of electrical conductivity and 

magnetoelasticity of electromagnetic fields, particularly, theories of the 
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interdependence of two or more physical fields. Thin magnetoelastic structural 

elements are important structural elements of machine-building, aircraft-building, 

shipbuilding, and construction facilities. 

Many scientists worldwide and in our country have conducted studies on the 

processes of magnetoelastic deformation of thin electroconductive bodies. In 

particular Scientists like V. Novatskiy, B. E. Pobedri, D. I. Bardzokas, S. A. 

Ambarsumyan, G. Ye. Bagdasaryan, M. V. Belubekyan, K. A. Rakhmatulin, V. K. 

Kobulov, B. Kurmanbaev, Sh. A. Nazirov, T. Yuldashev, A. A. Kholzhigitov, R. Sh. 

Indiaminov, F. M. Nuraliev work on the topic. The analysis of the literature shows 

that the problems of mathematical modeling of the processes of geometric nonlinear 

deformation of magnetoelastic thin plates with an electrically conductive complex 

structural shape under the influence of an electromagnetic field have not been 

sufficiently studied. Thus, it is worth continuing studies on this issue. 

Mixed boundary value problems of generalized thermo-electro-magneto-elasticity 

theory for homogeneous anisotropic solids with internal cracks are studied in the 

article [2]. Using potential methods and theory of pseudo-differential equations in 

finite manifolds, existence and uniqueness of solutions are proved. In the article [3], 

a nonlocal first-order deformable plate model is presented to study the buckling and 

subsequent buckling of magneto-electro-thermoelastic (METE) nanoplates under 

magneto-electro-thermo-mechanical loadings.The mathematical model is described 

by a system of nonlinear equations for temperature and displacement, and heat 

release occurs in the source subregion V. Vasileva et al. identified in the article [4]. 

The behavior of an anisotropic material under limited deformations under the 

influence of external force factors in a non-uniform stationary temperature field has 

been studied [5]. The description of these processes requires the formulation of a 

boundary value problem taking into account the interaction of force and temperature 

factors. A size-dependent nanoplate model was developed to describe the free 

vibrational and torsional motions of magneto-electro-thermo-elastic (METE) 

rectangular nanoplates[6]. Nonlocal elasticity theory, along with third-order shear 

deformation theory, has been applied to size-dependent mathematical modeling of 

nanoplates. Hamilton's principle, Galerkin's method and Duffing type ordinary 

differential equations are used.  
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MATERIALS AND METHODS 

Based on the Hamilton-Ostrogradsky variational principle, a mathematical model of 

geometric nonlinear deformation of a magnetoelastic plate was developed [1]. A 

three-dimensional mathematical model was converted to a two-dimensional one 

using the Kirchhoff-Liav hypothesis. The geometric nonlinear strain tensor was 

obtained using the Cauchy relation and Hooke's law. 

According to [9] the general form of geometric nonlinear deformation obtained 

according to the Cauchy relation is as follows:  
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The electromagnetic field forces of the magnetoelastic plate were developed using 

the Lawrence force and Maxwell's electromagnetic tensor as in [7]. As a result, a 

mathematical model representing the process of geometric nonlinear deformation 

under the influence of electromagnetic field forces was developed [8]. 
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Initial and boundary conditions are as follows: 
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where, , ,xx yy xyN N N
 
 - normal and impact forces on the thickness of the plate. 

, ,xx yy xyM M M  - bending and twisting moments of the plate,  density, h- thickness 

of the plate, , , , , ,x y z x y zR R R N N N −  resulting volume forces, 

surface forces,  resulting contour forces , ,x y zT T T −  

temperature. 
 

Computational algorithm of numerical solution of the problem 

 
Figure 1. Computational algorithm for solving the equation. 

Steps of solving the boundary value problem of a thin magnetoelastic plate 

using the Iterative method 

 −

, , , , ,x y z zx zy zzq q q T T T −

, , , , , ,xx xy xz yy yz zxT T T T T T −
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The bending of the middle surface of the plate along the x,y,z coordinate axis is 

determined by the Iteration method. In this case, finding the displacement points of 

the middle surface of a thin plate with a complex shape along the coordinate x,y,z 

axis includes the following steps [8]: 

The following assignments 0 00, 0u v= = were done at the beginning of the iteration 

(iteration step i = 0). 

The value of the third part of the equation 0 ( , )w x y −  is found. In this case, all terms 

on the right side of the equation are assumed to be equal to 0. As a result, the equation 

will be as follows: 
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where, ( )z z zQ N q= − +  

When the iteration step is 1i = , 1 1,u v − are found from the first and second parts of 

the system of equations (1).  
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The values of 1w −  are found in the third part of the system of equations (4). 
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The generalized view of solving the system of equations (1) by the iteration method 

is expressed by the following formula (5,6): 
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Iteration continues until 1 1 1, , ,i i i i i iu u v v w w− − −−  −  −     condition meets. 

Where  −is the value of the error ( 0.0001) = . 
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The Bubnov-Galerkin variational method, Gaussian squares, Gaussian, Newmark, 

and Iteration number methods are used to determine the unknown coefficients in 

the equation of motion (1). In particular, coefficients ( , ), ( , ), ( , )i i iu x y v x y w x y of 

displacement along the OZ axis of the magnetoelastic thin plate are determined [9] 

 

RESULTS 

The analytical equation of the field of complex structural form was constructed using 

the R-function method of V. L. Rivachev [10]. In computational experiments, a 

symmetrical complex structural form was constructed as shown in Fig. 2. The elastic 

plate’s borders (four sides) are tightly fixed. 

Using the R-function, the boundary equation for the symmetric complex field (Fig. 

1) was constructed. Numerical results and a graphical representation of the bending 

of this symmetric complex magnetoelastic plate (Fig. 2) along the coordinate axis 

under the influence of external forces are presented in Fig. 3. 

 
Figure 2. A magnetoelastic symmetric thin plate of complex configuration 

with tightly fixed boundaries 
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In the calculation experiment, the geometric and mechanical parameters are given 

as follows: 

1 6 1 2

11 2
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Table 1. Bending of a magnetoelastic plate along (Ox) axis 

x y 

Values of the function 

w(x,y,t) when the 

electromagnetic field is 

not affected 

Values of the function 

w(x,y,t) when the 

electromagnetic field is 

affected 

Values of the function 

w(x,y,t) when the 

electromagnetic field 

and tempearture are 

affected 

-1 0 0 0 0 

-0.95 0 0.00033 0.00045 0.00066 

-0.9 0 0.00084 0.0011 0.0016 

-0.85 0 0.00089 0.0012 0.0017 

-0.8 0 0.00053 0.00072 0.00107 

-0.75 0 0,00015 0,000205 0,0003 

-0.7 0 0 0 0 

-0.3 0 0 0 0 

-0.25 0 0,000129 0,00017468 0,00025667 

-0.2 0 0,00051017 0,00069085 0,00101513 

-0.15 0 0,0010732 0,0010732 0,0010732 

-0.1 0 0,0016874 0,0016874 0,0016874 

-0.5 0 0,00220221 0,00220221 0,00220221 

0 0 0,0025 0,0025 0,0025 

0.5 0 0,002489 0,002489 0,002489 

0.1 0 0,002204 0,002204 0,002204 

0.15 0 0,001716 0,001716 0,001716 

0.2 0 0,001148 0,001148 0,001148 

0.25 0 0,000628 0,000628 0,000628 

0.3 0 0,000251 0,000251 0,000251 

0.35 0 0,000051 0,000051 0,000051 

0.4 0 0 0 0 

0.6 0 0 0 0 

0.65 0 0,000064 0,000087 0,000127 

0.7 0 0,000321 0,000321 0,000321 

0.75 0 0,000793 0,000793 0,000793 

0.8 0 0,001329 0,001329 0,001329 

0.85 0 0,0016 0,0016 0,0016 

0.9 0 0,00128 0,00128 0,00128 

0.95 0 0,000459 0,000459 0,000459 

1 0 0 0 0 
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Figure 3. Bending diagram of a magnetoelastic symmetric thin plate on an Ox 

axis with rigidly fixed boundaries. 

 

In short, the effects of mechanical forces on an electroconductive thin plate and the 

effect of magnetic field forces on mechanical forces were calculated (Table 1, Figure 

3). Results based on calculation experiments show that their mutual difference was 

18.4%.  

 

DISCUSSION OF THE RESULTS OBTAINED 

According to the experiment, the effects of mechanical forces on the electrically 

conductive thin plate and the effect of magnetic field forces on the mechanical forces 

were calculated (Table 2, Figure 4). The results of calculation experiments show that 

their mutual difference was 18.7%. To prove the validity of the results obtained 

above, the following study was conducted. By solving the problem, the compatibility 

of the results of the maximum displacement of the middle plane of the plate along 

the OZ axis and the existing numerical solutions of M.S. Kornyshin was checked. 

As a result, compatibility with existing solutions was achieved as follows (Table 3): 
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Table 3. Comparison results with existing solutions 

q* 
*

0w  - maximum displacements % 

External forces 
M.S. Cornishin 

results *

0w  

Author's results 
*

0w  

Comparison of 

results 

12.7  0.171 0.168 1.7 % 

19.0 0.252 0.249 1.2 % 

28.5 0.365 0.361 1.1 % 

 

CONCLUSION 

A mathematical model has been developed in the form of a system of differential 

equations with specific derivatives, representing the processes of geometric 

nonlinear deformation of a magnetoelastic thin plate with a complex structural 

shape. A calculation algorithm was developed to find the unknown coefficients in 

the mathematical model. The unknown coefficients of the mathematical model were 

found for the cases of rigidly fixed and hinged thin plate boundaries. Based on the 

obtained numerical results, the effect of electromagnetic field forces on a thin plate 

was studied and their comparative analysis was presented. The experiment’s results 

show that the magnetic field force effect on thin magnetoelastic plates. This proves 

that magnetic field force directly affects the plate’s deformation process. 
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