

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th June, 2025

USING VISUAL AIDS TO IMPROVE ENGLISH COMPREHENSION IN TECHNICAL SUBJECTS.

Babayeva Gulnozaxon Latibjonovna, Andijon Davlat Texnika instituti, Tillar va gumanitar fanlar kafedrasi dotsenti, boboyevagulnoza6@gmail.com

Annotation:

This paper discusses the use of visual aids in improving English language comprehension among engineering students. It emphasizes how visual materials such as diagrams, videos, and models can simplify technical concepts and support vocabulary acquisition. The article outlines different types of visual aids, their implementation in classroom settings, and their impact on student understanding and motivation. Challenges like resource limitations and overuse are also considered. The paper concludes that visual aids play a vital role in making technical English instruction more effective.

Keywords: Visual aids; technical English; engineering education; comprehension; diagrams; multimedia learning; vocabulary development; English instruction; learner engagement; educational technology.

In technical education, English language proficiency plays a crucial role in enabling students to access academic content, communicate ideas, and succeed in professional environments. However, technical terms, abstract concepts, and complex structures often pose difficulties for non-native English learners. One effective way to enhance understanding is through the use of visual aids. Visual aids such as diagrams, flowcharts, graphs, models, and multimedia presentations can simplify complex information, reinforce vocabulary, and support listening and reading comprehension. This paper explores how visual aids can be integrated into English classes for engineering students to improve comprehension and engagement.

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th June, 2025

Visual aids bridge the gap between language and comprehension, especially in subjects that require spatial or process-based understanding. In engineering and other technical disciplines, diagrams and illustrations help clarify structures, mechanisms, and processes. When these visuals are paired with English explanations, students are better able to associate terminology with actual representations. This dual-coding approach—where learners process information both visually and verbally—has been proven to enhance memory and concept retention. In addition, visual aids can contextualize unfamiliar vocabulary, making it more accessible and meaningful.

There are various types of visual aids that can be effectively used in technical English classes. These include labeled diagrams of machinery, process flowcharts, schematic drawings, PowerPoint slides, videos, and 3D models. Interactive tools like simulations and animations also engage learners while illustrating real-time functions. For instance, a video showing how an internal combustion engine works, with English narration and subtitles, can enhance comprehension of related terminology. Infographics and charts help students visualize numerical data and technical comparisons.

To integrate visual aids effectively, teachers should align them with specific learning goals. Lessons can begin with a short video or image to introduce the topic, followed by vocabulary identification tasks based on the visuals. During the lesson, students can participate in matching exercises, label diagrams, or describe processes orally or in writing. Group tasks can involve students creating their own visuals and presenting them in English. Using visual aids alongside reading and listening tasks enhances multimodal learning and supports students with different learning styles. Visual aids significantly enhance comprehension by breaking down linguistic barriers. They support vocabulary acquisition, improve retention, and increase student engagement. Visual elements provide context clues that help decode unfamiliar words and reinforce meaning through repetition and association. Moreover, students become more confident in using technical terms when they understand what the words represent. In assessments, learners who have been exposed to visual aids often perform better in comprehension and oral expression. These tools also foster learner autonomy and creativity.

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th June, 2025

While visual aids offer many advantages, there are challenges to their implementation. Creating or sourcing high-quality visuals can be time-consuming, and not all teachers have access to the necessary technology or resources. Additionally, over-reliance on visuals may reduce language input if not balanced with verbal explanations and practice. Teachers must ensure that visuals are pedagogically sound, relevant to the topic, and accompanied by structured activities. Proper planning and integration are key to maximizing the effectiveness of visual aids in language instruction.

Visual aids are powerful tools in teaching English to engineering students. They help simplify complex ideas, reinforce vocabulary, and make technical subjects more accessible to non-native speakers. When used thoughtfully, visual aids can transform language instruction into a more interactive and effective learning experience. For educators in technical fields, incorporating visuals is not just a supplementary strategy but a necessary component of comprehensive English instruction.

References:

- 1. Harmer, J. (2007). The Practice of English Language Teaching (4th ed.). Longman.
- 2. Dudeney, G., & Hockly, N. (2007). How to Teach English with Technology. Pearson Longman.
- 3. Brown, H. D. (2007). Principles of Language Learning and Teaching (5th ed.). Pearson Education.
- 4. Paivio, A. (1990). Mental Representations: A Dual Coding Approach. Oxford University Press.
- 5. Mayer, R. E. (2009). Multimedia Learning (2nd ed.). Cambridge University Press.
- 6. Coxhead, A. (2011). Vocabulary and ESP. In Paltridge, B. & Starfield, S. (Eds.), The Handbook of English for Specific Purposes. Wiley-Blackwell.
- 7. Nation, I. S. P. (2001). Learning Vocabulary in Another Language. Cambridge University Press.

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th June, 2025

- 8. Stoller, F. L. (2006). Establishing a Theoretical Foundation for Project-Based Learning in Second and Foreign Language Contexts. Information Age Publishing.
- 9. Richards, J. C., & Rodgers, T. S. (2014). Approaches and Methods in Language Teaching (3rd ed.). Cambridge University Press.
- 10.Buckley, B. C. (2000). Interactive multimedia and model-based learning in science. International Journal of Science Education, 22(9), 895–935.