

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th October, 2025

DEVELOPMENT OF WATER-SAVING TECHNOLOGY BASED ON BENTONITE IN URBAN LANDSCAPING SYSTEMS

Oripov Abdullo Akbarjon oʻgʻli Namangan State Technical University, Uzbekistan

Scientific Supervisor: PhD., Assoc. Prof. Sh. Juraev

.

Abstract

Water scarcity is one of the most pressing environmental challenges of the 21st century. According to the United Nations, nearly 60% of the global population will face water shortages by 2050. Uzbekistan, located in a region with limited water resources, experiences significant difficulties in maintaining adequate water supply due to climate change and population growth. This research focuses on developing an innovative water-saving technology for urban landscaping systems using locally available bentonite clay. The study investigates the physical and chemical properties of bentonite, its interaction with soil, and its potential to retain water and improve plant growth under arid conditions.

Keywords: Water-saving technology; Bentonite clay; Soil moisture retention; Urban landscaping; Sustainable irrigation; Green infrastructure; Soil hydrology; Climate adaptation; Eco-friendly materials; Uzbekistan; Water efficiency; Environmental sustainability

1. Introduction

Rapid urbanization and climate change have intensified the demand for sustainable water management in green infrastructure. Urban landscaping plays a crucial role in maintaining ecological balance, air purification, and improving the urban microclimate. However, traditional irrigation methods consume large amounts of water, making them unsustainable under current climatic and hydrological conditions. Therefore, implementing innovative water-saving technologies is essential. Bentonite, a natural clay mineral with high water absorption and retention

E CONF SERIES

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th October, 2025

capacity, offers promising potential for reducing irrigation frequency and improving soil water balance in landscaping systems.

2. Materials and Methods

The research employed both laboratory and field experiments to analyze the effectiveness of bentonite in soil water retention. Locally sourced bentonite from Navbahor (Navoiy region) was used. Physical-chemical characterization included X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Experimental plots were established in Namangan city, where soil moisture dynamics, irrigation frequency, and plant growth indicators were monitored over a 90-day period. Comparative analysis was conducted between conventional irrigation methods and bentonite-modified soils.

3. Results and Discussion

The experimental results revealed that bentonite significantly improved the soil's ability to retain moisture. Soils treated with 5–10% bentonite demonstrated a 35–45% reduction in irrigation water demand. The bentonite-modified plots maintained soil moisture 2–3 times longer than untreated ones, reducing irrigation frequency by up to 40%. Plant growth measurements indicated a 25% increase in biomass and chlorophyll content compared to control samples. Furthermore, the technology proved economically viable, reducing overall water consumption while maintaining or enhancing vegetation quality.

4. Additional Data and Diagrams

Table 1. Soil moisture retention dynamics in bentonite-treated and control soils.

Days after irrigation	Soil type	Average content (%)	moisture Retention improvement (%)
0	Control	22.1	-
0	Bentonite (5%)	28.4	28.6
3	Control	12.7	-
3	Bentonite (5%)	19.6	54.3
6	Control	6.3	-
6	Bentonite (5%)	11.2	77.8

E CONF SERIES

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th October, 2025

Table 2. Comparison of water consumption and plant growth performance under different irrigation systems.

Irrigation method	Average wat	rage water Irrigation		biomass increase
	consumption (L/m²)	(per month)	(%)	
Traditional surfaction	ce 25.0	12	_	
Drip irrigation	16.5	8	+12	
Bentonite-assisted drirrigation	ip 13.8	6	+27	

5. Conclusion

The study confirms the efficiency of bentonite as a natural, eco-friendly material for water-saving applications in urban landscaping. Its high water absorption capacity and long-term stability contribute to the sustainability of green infrastructures in arid regions. Implementing this technology could reduce irrigation water consumption by up to 40%, making it a practical solution for climate-resilient urban development. Future research will focus on optimizing bentonite mixtures with organic additives and testing under various soil types and climatic conditions.

References

- 1. Акрамов С. Городская зеленая инфраструктура и устойчивость к изменению климата. Т.: Эко характер, 2022.
- 2. Гуломов А. Свойства бентонитовых глин. Т.: Фан, 2018.
- 3. ГОСТ 19176-79. Бентонит технические свойства.
- 4. Исмоилов Х., Тухтабоев С. Основы почвоведения и мелиорации. Т.: Учебное пособие, 2021.
- 5. Jurayev, Sh. Sh. (2019). Analyze of the permeability of bentonite and sand in soil structures// ИЅЈ Theoretical & Applied Science, Philadelphia, USA. 03 (71), Pp.437-440.
- 6. Jurayev Sh. Determination of water permeability of local ground in field conditions// Indo Asian Journal of Multidisciplinary Research, 2019, 5(1): Rr.1592-1596.

E CONF SERIES

International Conference on Medical Science, Medicine and Public Health

Hosted online from Jakarta, Indonesia

Website: econfseries.com 30th October, 2025

- 7. Jurayev, Sh. Sh. (2019). Analyze of the permeability of bentonite and sand in soil structures// MSJ Theoretical & Applied Science, Philadelphia, USA. 03 (71), Rr.437-440.
- 8. Информация хокимията Наманганской области. 2023.
- 9. Норматов И. Водные ресурсы и их управление. Душанбе, 2019.
- 10. Государственный комитет Республики Узбекистан по статистике. www.cтaт.y3, 2024.
- 11. Постановление Президента Республики Узбекистан № ПҚ-4246 от 2019 г.
- 12. Каюмов М., Зуннунов Р. Основы агротехнологий. Т.: Мехнат, 2018.
- 13. Расулов Т. Энергосберегающие технологии. Т.: Энергия, 2019.
- 14. Smith, M., & Munoz, G. Modern clay technologues for soul mousture. Elsevuer, 2014.
- 15. Тожиев С. Инновационная модернизация оросительных систем. Самарканд, 2021.
- 16. World Bank. Uzbekustan Water Sector Modernuzatuon Strategy. 2020.
- 17. А.Арифжанов, Ш.Жураев Методы изучения филтрационных особенности бентонитов в гидротехнических сооружениях. The collection includes scientific-materials of the International conference partisipants on the theme of "Topisal issies of import substituting product based on the use of losal rash materials un the Fergana valley" held on Ostober 27-28, 2018.C.271-273
- 18. Арифжанов А., Жураев Ш. Значение бентонита в изучении процесса филтрации в гидротехнических сооружениях// Республика илмий-амалий конфренцияси. Наманган 2013. –Б.146-148.
- 19. Арифжанов А., Жураев Ш. Определение водопроницаемости местных грунтов в полевых условиях// НамМТИ илмий техника журнали Наманган 2019. -№ 1. –Б.113-117.
- 20. Жураев Ш., Косимов Т. Определение филтрационной прочности и начального градиента филтрации в грунтовых сооружениях. // НамМТИ илмий техника журнали 2019. -№ 1. –Б.213-218.